Paper Title :Hybrid Feature Selection Technique using Filter (FCBF) & Wrapper Method (SFFS) for Discrete Class Data Mining
Author :Abhilasha Sharma, Arti Deshpande
Article Citation :Abhilasha Sharma ,Arti Deshpande ,
(2017 ) " Hybrid Feature Selection Technique using Filter (FCBF) & Wrapper Method (SFFS) for Discrete Class Data Mining " ,
International Journal of Soft Computing And Artificial Intelligence (IJSCAI) ,
pp. 13-17,
Volume-5,Issue-2
Abstract : Feature Selection can extensively increase the scope of classifiers to work on high dimensional data by reducing
the variables or features used for classification. A dataset may represent a number of attributes which have little relevance to
classification problem associated with it. By choosing a subset of the most useful attributes, classification is best aided to
produce most accurate classification results. This paper uses a hybrid feature selection technique using supervised feature
selection techniques. The filter method is used to sort the features in order of their ‘usefulness’ and the wrapper method is
used for picking out the best subset from these features to simplify classification. The last step is to create a comparison in
performance between attributes acquired as a result of the hybrid model and the total set by passing both via the classifier to
calculate error and accuracy.
Keywords - data mining, feature selection, fast correlation based filter, sequential forward floating selection, hybrid model,
classification, naïve bayes
Type : Research paper
Published : Volume-5,Issue-2
DOIONLINE NO - IJSCAI-IRAJ-DOIONLINE-10014
View Here
Copyright: © Institute of Research and Journals
|
 |
| |
 |
PDF |
| |
Viewed - 62 |
| |
Published on 2018-01-23 |
|