International Journal of Soft Computing And Artificial Intelligence (IJSCAI)
.
Follow Us On :
current issues
Volume-9,Issue-1  ( May, 2021 )
Statistics report
Aug. 2022
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 17
Paper Published : 198
No. of Authors : 562
  Journal Paper


Paper Title :
Parallel Particle Swarm Optimization in Data Clustering

Author :Yasin Ortakci

Article Citation :Yasin Ortakci , (2017 ) " Parallel Particle Swarm Optimization in Data Clustering " , International Journal of Soft Computing And Artificial Intelligence (IJSCAI) , pp. 10-14, Volume-5,Issue-1

Abstract : Particle Swarm Optimization (PSO) is a heuristic and population based optimization algorithm. PSO can be used in clustering problems and dominates well known clustering algorithms such as K-Means and Fuzzy C-Means in the context of not being stuck the local optima. In this study, a parallel PSO method was presented for clustering data.The parallel PSO was tested with the iris and an artificial data set on a multiprocessor system. The results are compared to the sequential PSO in term of fitness value, computation time and clustering success. The results show that parallel PSO outclasses sequential PSO in the term of computation time in multiprocessor system. On the other hand, clustering success of parallel PSO is not less than sequential PSO. Even its clustering success is %100 for the artificial dataset, whereas S-PSO’s clustering success is about %95. Besides, parallel PSO converges to the optimum result for both datasets much earlier than S-PSO. Index Terms — PSO, parallel computing, clustering, multiprocessor.

Type : Research paper

Published : Volume-5,Issue-1


DOIONLINE NO - IJSCAI-IRAJ-DOIONLINE-7604   View Here

Copyright: © Institute of Research and Journals

| PDF |
Viewed - 89
| Published on 2017-06-13
   
   
IRAJ Other Journals
IJSCAI updates
IJSCAI Volume-9,Issue-1 ( May, 2021 )
The Conference World

JOURNAL SUPPORTED BY